[1] S. Jeloka, N. Bharathwaj, and D. Sylvester, “A 28nm configurable memory (TCAM/BCAM/SRAM) using push-rule 6T bit cell enabling logic-in-memory,” IEEE Jour. of Solid-State Circuits, vol. 51, no. 4, pp. 1009–1021, Apr. 2016.
[2] Q. Dong, S. Jeloka, M. Saligane, Y. Kim, M. Kawaminami, A. Harada, S. Miyoshi, M. Yasuda, D. Blaauw, and D. Sylvester, “An 4T+2T SRAM for searching and in-memory computing with 0.3-V VDDmin” IEEE Jour. of Solid-State Circuits, vol. 53, no. 4, pp. 1006– 1014, Apr. 2018.
[3] Y. Zhang, L. Xu, Q. Dong, J. Wang, D. Blaauw, and D. Sylvester, “Recryptor: a reconfigurable cryptographic Cortex-M0 processor with in-memory and near-memory computing for IoT security,” IEEE Jour. of Solid-State Circuits, vol. 53, no. 4, pp. 995–1005, Apr. 2018.
[4] A. Agrawal, A. Jaiswal, C. Lee, and K. Roy, “X-SRAM: enabling inmemory boolean computations in CMOS static random access memories,” IEEE Trans. on Circuits and Systems-I: Regular Papers, vol. 65, no. 12, pp. 4219–4232, Dec. 2018.
[5] W. Kang, H. Wang, Z. Wang, Y. Zhang, and W. Zhao, “In-memory processing paradigm for bitwise logic operations in STT-MRAM,” IEEE Trans. on Magnetics, vol. 53, no. 11, Nov. 2017.
[6] S. Jain, A. Ranjan, K. Roy, and A. Raghunathan, “Computing in memory with spin-transfer torque magnetic RAM,” IEEE Trans. on VLSI Systems, vol. 26, no. 3, pp. 470–483, Mar. 2017.
[7] J. Zhang, Z. Wang, and N. Verma, “In-memory computation of a machine-learning classifier in a standard 6T SRAM array,” IEEE Jour. of Solid-State Circuits, vol. 52, no. 4, pp. 915–924, Apr. 2017.
[8] W.-S. Khwa, J.-J. Chen, J.-F. Li, X. Si, E.-Y. Yang, X. Sun, R. Liu, P.- Y. Chen, Q. Li, S. Yu, and M.-F. Chang, “A 65nm 4Kb algorithmdependent computing-inmemory SRAM unit-macro with 2.3ns and 55.8 TOPS/W fully parallel product-sum operation for binary DNN edge processors,” in Proc. IEEE Int’l Solid-State Cir. Conf. (ISSCC), Feb. 2018, pp. 496– 497.
[9] A. Agrawal, A. Jaiswal, D. Roy, B. Han, G. Srinivasan, A. Ankit, and K. Roy, “Xcel-RAM: accelerating binary neural networks in highthroughput SRAM compute arrays,” [Online]. Available: https://arxiv.org/abs/1802.08601, 2018.
[10] A. Jaiswal, I. Chakraborty, A. Agrawal, and K. Roy, “8T SRAM cell as a multi-bit dot product engine for beyond von-neumann computing,”[Online]. Available: https://arxiv.org/abs/1802.08601, 2018.
[11] C. Merkel, R. Hasan, N. Soures, D. Kudithipudi, T. Taha, S. Agarwal, and M. Marinella, “Neuromemristive systems: boosting efficiency through brain-inspired computing,” IEEE Computer, vol. 49, no. 10, pp. 56–64, Oct. 2016.