
57 第165期　電腦與通訊免費訂閱

用於自攜裝置(BYOD)安全之智慧手機虛擬化技術
Smartphone Virtualization for Bring Your Own Device (BYOD) Security

 卓傳育 林浩澄 洪茂榮
Chuan-Yu Cho, Hou-Cheng Lin, Anthony

用於自攜裝置(BYOD)安全之智慧手機虛擬化技術
Smartphone Virtualization for Bring Your Own Device (BYOD)
Security

 卓傳育 林浩澄 洪茂榮
Chuan-Yu Cho, Hou-Cheng Lin, Anthony

中文摘要

 智慧手機及行動上網裝置過去幾年來全球普及率已超過30%，不僅為人們帶來大量的便利智
慧生活服務，其不斷提升的運算效能，更逐漸取代傳統筆記型電腦，成為工作上最重要的智慧終
端設備。然而員工自攜智慧手機至工作環境使用時，各式各樣自行下載的APP及不同手機中運行
的系統服務，亦同時接續入到企業網路內部網路，而造成嚴峻的自攜裝置 (BYOD)安全管理挑戰。
現行以MDM(Mobile Device Management)嚴格控管智慧終端的方式，仍面臨取捨智慧終端安全管
理與使用便利之兩難。智慧手機虛擬化 (Smartphone Virtualization)技術以運行彼此相互隔離的安
全工作手機環境之能力，達到安全威脅隔離同時可兼顧提供個人自由應用之便利，為BYOD安全
的管理帶來新的技術突破契機。本文提出虛擬化智慧手機 (Virtualized Smartphone)及虛擬行動基
礎架構 (Virtual Mobile Infrastructure)兩種方式，可有效滿足在高度安全控管的條件下，仍能兼俱
提供自主便利應用服務功能。藉由已可在商用智慧手機中展示的雛型成果，我們已證明智慧手機
虛擬化技術可作為BYOD安全的有效解決方案，並且已具備導入到商業環境應用之成熟度。

Abstract

 With a more than 30% rapid growth in global smartphone dispersion in last few years, not
only are people experiencing exponential increase in convenience from intelligent application
services, the continuous breakthroughs on end-device computing have also caused more and more
smartphones entering enterprise network environment. Massive and various user -installed apps and
services are prone to bring numerously potential security threats directly into enterprise network
without any firewall protection. Using MDM (Mobile Device Management) to add strict security
policies and monitoring may improve the BYOD securi ty management, but it still encounters a great
challenge to strike a balance between security and convenience. In this paper, two smartphone
virtualization technologies - Virtualized Smartphone and Virtual Mobile Infrastructure - are
proposed to provide a best balance between security management and user convenience. The
prototype solutions have been successfully implemented and demoed using general ly available
commercial smartphones, and the performance evaluation results also support the proposed solutions
that are able to provide a close-to-native smartphone user experience.

Key Words

Smartphone Virtualization (智慧手機虛擬化技術)

Bring Your Own Device；BYOD (自攜裝置)

Virtualized Smartphone (虛擬化智慧手機)

Virtual Mobile Infrastructure (虛擬行動基礎架構)

https://docs.google.com/forms/d/12JxxWDfvbo4shF6-AoWzpJ-abEX7XqK5lwDLq8jw3k4/viewform?pli=1&edit_requested=true

58 ICT Journal No.165

１．Introduction

With the rapid growth of smartphone devices
and mobile applications and services, Bring
Your Own Device (BYOD) security not only has
become one of the top risks, it has also turned
into general data breaches and malware, insider
and outsider threat, and advanced persistent
threats, according to a latest IT strategy research
report by Wisegate [1]. Moreover, BYOD and
cloud security have been identified as the most
impactful trends to IT security programs. The
general BYOD security’s challenge could be
simply said that many mobile apps are relatively
prone to malware compromising the smartphone
and yet employees, unaware of that, like to use
smartphones to access enterprise network . The
various user-installed apps and potential
smartphone security breaches are soon becoming
potential gateways for malwares to permeate
into the company networks, databases, and other
systems.

MDM (Mobile Device Management) has
been widely deployed as an effective tool to
manage BYOD security by installing security
monitoring agents onto the smartphones [2].
However, adding strict security-control agent to
smartphones incurs strong trade-off between
security and convenience. Generally, employee
prefers to use their own smartphones freely and
without any interventions or privacy offended by
the company’s agent, whereas the company is
obliged to secure every device where the
company’s data resides. As the result, a secured
company smartphone nowadays tends to work
only for simple and trivial tasks, and the
employee will still continue to bring their own
unsecured devices to the working place.

Therefore, the fundamental challenge of
modern BYOD security is more than just
security manageability, but also finding a way to

let employee continue to work effectively and
efficiently using a BYOD smartphones without
any hassle. Virtualization technology turns out
to be a smart solution to this challenge due to its
fully isolated nature of virtual machines (VMs).
As such, security threats are fully quarantined
inside a VM even when the operation system is
compromised by kernel rootkits. As a result,
running multiple independent and virtual mobile
OSes within a single smartphone could provide
the best balance between enterprise-level
security and personal-device convenience
because users could freely operate his/her own
smartphone while the potential security damages
are well segregated from the other VM.

Virtualization technology which began in
the 1960s refers to the act of creating virtual
version of something, such as computer
hardware, operating system, storage devices, and
computer network. In the last ten years,
virtualization technology has been the key
success to the advancement of cloud computing
or any other services leveraging cloud
computing such as Amazon and Facebook. It is
due to the nature of virtualization to be better in
resource provisioning, consolidation,
convenience, economic, and etc. With the
advancement of smartphone’s hardware
capabilities as well as rapid increase in
smartphone adoptions, researchers and
companies have been trying to bring
virtualization to realm of smartphone to solve
various problems [3] [4]. The leading
virtualization solution providers such as
VMware and Citrix have been working on
migrating advanced VDI (Virtual Desktop
Infrastructure) onto smart handheld devices and
enforcing comprehensive MDM solutions for
enterprise BYOD security. On the other hand,
many other emerging start-ups such as Sierra,

2．Way to Smartphone Virtualization

59 第165期　電腦與通訊免費訂閱

Hypori, Romotium and Cellrox are particularly
focusing on incubating smartphone
virtualization technologies.

In this paper, two types of smartphone
virtualization, Virtualized Smartphone [6] and
Virtual Mobile Infrastructure (VMI) [7], are
proposed to architect a novel BYOD security
solution individually or jointly.

Figure 1 Multiple virtual smartphones running on a
single virtualized smartphone solving BYOD security
management

Both types of smartphone virtualization are
generally depending on whether the requirement
to its client device is a thin-client or a
smart-rich function smartphone. Virtualized
Smartphone requires a powerful handheld device,
which allows another Android OS being run on
top of the same smartphone in the form of
virtual machine(Figure 1). On the other hand,
VMI allows us to run the Android OS VM on the
remote servers and stream back the VM screen
to the smartphone over the internet.

2.1 Virtualized Smartphone
As virtualized smartphone is equipped with

a hypervisor, a technique allowing multiple
mobile OSes to be run concurrently on the same
smartphone, security policies could be applied
onto each of guest mobile OSes through
hypervisor to address BYOD concerns for each
virtual smartphone. For instance, one
smartphone now can have four virtual
smartphones running i.e a Work, Secure,
Personal, Disposable virtual smartphones. As

illustrated in Figure 2, a Work virtual
smartphone should be strictly locked down using
attestation process such as verification of binary
of BIOS, OS, applications, and their
configurations. In addition, some corporate
security policies may restrict some documents to
be viewed-only and cannot be sent out directly,
and a military grade certification such as the
DISA’s security technical implementation guide
(STIG) may also need to be applied in highly
security-sensitive companies.

Figure 2 Usage Scenarios for Virtualized Smartphone

When a clean and safe environment for
sensitive banking of e-trading applications is
required, a Secure virtual smartphone could be
used. Hence, whitelisting-based security
protection may be applied to make sure no
unknown binary is allowed to run and no key
loggers exist. For Personal virtual smartphone, it
could only be protected using black-listing
antivirus solutions, and the users could install
and play any kind of apps they wish . Finally, it
is possible to let users create a Disposable
virtual smartphone to serve as a “Do whatever
you want” playground or a sand box for app
testing in general.

The major technology challenges in
delivering a successful virtualized smartphone
include: 1.) Low-overhead hypervisor on
smartphones – although today’s smartphones are
being equipped with more and more CPU power
as well as larger memory (up to 4G), it is still a

https://docs.google.com/forms/d/12JxxWDfvbo4shF6-AoWzpJ-abEX7XqK5lwDLq8jw3k4/viewform?pli=1&edit_requested=true

60 ICT Journal No.165

big challenge to efficiently run multiple virtual
smartphones at the same time. It turns out that a
low-overhead hypervisor on smartphones
becomes a major competitive advantage.

With this low-overhead hypervisor, it is
then possible to deliver 2.) Same UI fluency
inside virtual smartphones and 3.) Seamless
context-dependent switching among virtual
smartphones. After getting smartphone
virtualized, how to enforce the security policies
onto each virtual smartphones emerges to be the
next major task. Technologies to provide
4.)Virtual machine introspection-based
whitelisting, 5.)Display-only file system: having
files never leave a server and 6.) Malware
detection are among the essential requirements
for secure, personal virtual smartphones. Some
general ideas for malware detection may
include:

(1) Provenance tracking: Is a program properly
installed?

(2) Installation checkup: Applications that are NOT
properly installed tend to start up in a different
way (e.g. in a system start-up script).

(3) Bait-based detection: Files with enticing names
are automatically created and placed in random
places and are not supposed to be touched by
legitimate applications.

To provide display-only file system service
and make sure files never leave a server, APP
streaming technologies such as the solutions
provided by Agawi (acquired by Google),
VMFive, mNectar, App.io, AppSurfer and
VOXEL are the right answer to this quest by
running a mobile App without leaving the
enterprise data center so that the data could be
securely kept inside enterprise IT system.

2.2 Virtual Mobile Infrastructure (VMI)
APP streaming could be viewed as a

simplified version of Virtual Mobile
Infrastructure (VMI) which streams only a single

App instead of the entire virtual smartphone VM
activities.[8][9] As for BYOD security, VMI
might be the best, cross-platform and thin-client
solution that is analogous to the VDI for
Desktop PCs.

Figure 3 Virtual Mobile Infrastructure keeps apps and
data in enterprise’s datacenter and thus no data leakage
risk

Figure 3 presents a basic concept of VMI
which includes both mobile desktop streaming
and local sensors redirection such as GPS, gyro
and multi-touch events. The VMI is particularly
useful in dealing with applications that have
exhaustive computing power consumption e.g.
CAD/CAM viewers and editors; network usage
for large file, video and rich web content
browsing; and high data-security needs such as
centralize data management. Most importantly,
the best part of VMI is really the “no risk at all
of device stolen or lost” . However, the access
bandwidth’s variance and limitation of
enterprise network are still the major road block
for better VMI user experience. In addition,
rich-sensor devices and the need for instant
device interaction also bring significant
technology challenge when developing a
commercial-grade VMI solution.

Furthermore, in the VMI server side,
efficiently running Android for x86 servers
plays another key role and how to ensure various
apps could be running properly without any
modification could be a potential challenge as

61 第165期　電腦與通訊免費訂閱

well. Moreover, the client sensing devices such
as touch sensor, gyro sensor, GPS, camera, and
others may also need to be equipped onto the
Android VM using respective virtual device
interfaces, which makes further difficulties on
both device emulation and instant result
streaming.

3．Virtualized Smartphone

As the Android kernel is a modified Linux
kernel, existing virtualization solutions in Linux
can be easily ported to Android environment.
The difference of an Android kernel is mainly at
the additional fast IPC mechanism for reducing
the effort of application / framework service
communications, and wake-lock mechanism for
fine-grain control of power saving by
applications.

The proposed virtualization solution used in
this paper is KVM (Kernel-based Virtual
Machine) kernel module and QEMU (Quick
Emulator) software. The KVM relies on Intel
VMX or AMD SVM hardware to configure a
virtualized CPU, virtualized memory and to
control the entry/ exit to/from VM mode. The
KVM provides a KVM API for user level
process to create a VM and to assign its
associated VCPU, memory and the run in VM
mode. The QEMU process calls the respective
KVM APIs to initial a virtual machine and to
emulate its I/O devices activities when virtual
machine access device through IO port . In
addition, QEMU is also in charge of deliver
infrastructure features such as network address
translation (NAT) for providing network access
to VM, network port forwarding to export the
service access point of VM to public network
and VNC (Virtual Network Computing) server
that provides remote console access to the VM.

The software architecture of proposed
Android virtualization application is depicted in

Figure 4, and it is similar to Linux hypervisor
software: KVM module runs in kernel mode,
QEMU component runs in user mode and one
extra virtualization app component runs on top
of Android Davlik JVM.

Android guest

KVM

qemu
component

Android
framework

virtualization application

handler

ui

Android
kernel

jni

enter vm

exit vm

event daemon

vmemvcpu

vvga vdisk

sdk

syscall and /dev/kvm

qemu
controller

Figure 4 Software Architecture of Android
Virtualization

As the Android framework is a Java based
execution environment whereas QEMU depends
on C libraries, it requires JNI (Java Native
Interface) to communicate between QEMU and
the Android app. In Figure 4, the Android
framework interacts with app component
through Android SDK interface, and the app
component contains one QEMU controller that
calls QEMU component's main function through
the JNI interface. The VM configurations are in
forms of function parameters, passed to start
VM function, including number of vCPUs, size
of memory, disk image file name and the
network settings. The QEMU then calls KVM
kernel module through KVM ioctl command to
"/dev/kvm" device for creating the virtual
machine and then call kvm_run ioctl command
to enter the VM execution mode.

3.1 Virtual Smartphone VM APP
Since the Android framework is written in

Java and executed in a JVM(Java Virtual

https://docs.google.com/forms/d/12JxxWDfvbo4shF6-AoWzpJ-abEX7XqK5lwDLq8jw3k4/viewform?pli=1&edit_requested=true

62 ICT Journal No.165

Machine), the Android application are also in
Java byte code to access the API and service of
framework. The top-half of virtualization
application is also written in Java and includes
the following three main packages: UI, handler
and QEMU controller. The UI package’s main
purpose is to handle UI event, refresh display of
virtual machine and to call other packages while
getting click events. The QEMU controller is
invoked by UI package and is responsible to
provide APIs to control or to query QEMU
states as well as to get pointer of vga frame
buffer and its dirty status. The QEMU module is
finally executed by QEMU controller via JNI
interface in order to access the memory block or
to call functions in C code level.

The handler is responsible to forward
events in host into VM's event daemon via
SVMP (Secure Virtual Mobile Platform)
protocol.[10][11][12] The SVMP protocol is
borrowed from SVMP project [4], an open
source VMI project, which contains definition of
various phone events. For example: the
multi-touch event, GPS location event and phone
rotation event. These events will be received by
handler package and be forwarded to Android
VMs accordingly. Reversely, for events
generated inside Android VMs are also delivered
by event daemon to handler package . For
example, the notification messages in Android
VMs have to be encapsulated into SVMP
messages and deliver to handler package to
display it on the host's notification board.

3.2 Display Optimization
A VM run inside the QEMU module has

output its display on to an emulated VGA
(Video Graphic Array) card on host environment.
User may either use remote display protocol or
SDL library to get the VGA frame buffer and
display it on to the physical display device.
However, these two approaches are both not

feasible on an Android phone because Android
environment does not support SDL library and
the remote display protocol’s performance is too
slow due to the unnecessary compress and frame
buffer memory copy operations. As a result, a
better approach for virtual machine display is
proposed with the following optimizations:

(1) directly access the frame buffer memory
that resident in virtual machine.

(2) using host phone's 3D chip that accelerate
display speed.

In order to directly access the frame buffer,
it is necessary to look into the QEMU's vga card
emulation code and add a JNI function
get_framebuffer(), to return the pointer of vga’s
vram frame buffer. The UI package ’s display
refresh code, runs in Java byte-code level, calls
this JNI function to get the frame buffer in C
level, and then update it to phone’s screen
accordingly.

The UI package relies on the OpenGL 3D
library to create a simple 3D world with the
following three objects: uniform light source,
wall for painting VGA frame buffer on top of it
and a viewpoint in front of the wall. The UI
package first periodically paint the content of
VGA frame buffer onto the wall, and then a
user on the viewpoint, sitting in front of the
wall, will see the VM’s VGA output from the
wall just similar to the audience watch movies
in the theater. The “texture” properties of a 3D
object are then periodically refreshed through
binding pointer with VM’s VGA frame buffer.

For better performance, one dedicated
thread is create to constantly update VGA
frame buffer onto wall and to run OpenGL
render scripts to generate the viewable scenes .
The steps of frame buffer fetch, update and
render are depicted in Figure 5.

63 第165期　電腦與通訊免費訂閱

Android guest

qemu

vga frame buffer

Android
framework

android application

/dev/fb0

ui

jni

opengl

fb driver

dirty bitmap

render lib

framework

1) get

2) update

Figure 5 Design of Display Acceleration
As most of the time the VM’s display is

unchanged, the update and render activity of the
unchanged frame should be skipped for better
performance and efficiency. As QEMU support a
dirty memory tracking feature, we further
leverage this feature to enhance display
experience. If the VGA frame buffer is not
marked as dirty, its update is skipped. Otherwise,
current frame is updated into OpenGL, and then
is rendered follow by a reset memory dirty flag
reset operation.

Since the implementation of dirty memory
tracking APIs is based on hardware MMU’s
writing protection feature, the cost to trace
memory dirty is relative cheap whereas the
results of skipping frame update could
significantly reduce the CPU and GPU loads.

3.3 Experimental Results
In this paper, a working prototype of a

virtualized smartphone has been successfully
built. Leveraging Android-x86 project[13], an
open source project that port Android AOSP
image to x86-based architecture machine and
maintained by Taiwanese software engineer, as
the guest OS of the virtual machine running on a
commercial phone ASUS Zenfone2 which has
been rooted and bootloader unlocked , our
project has a close collaboration and active
support from the related parties. In summary,
our project leverages QEMU, an open source

hypervisor, and SVMP for the sensor and I/O
redirection mechanism. Lastly, our display
acceleration mechanism significantly improved
the time-to-display overhead.

The features supported in current prototype
includes:

(1) OpenGL direct display. Fast display by
directly access and display the frame
buffer of the guest VM.

(2) Single & multi-touch. Multi-touch events
are able to be forwarded to the VM.

(3) Rotation event. When the host-screen is
rotated, the VM will also rotate its screen.

(4) Dial-out Call. Upon attempt to dial a
number from inside the VM, user will be
redirected to dial-out app on host phone.

(5) GPS Location. Every change in the host GPS
data will be sent to the VM, allowing the
VM to have similar behavior as the host.

(6) Audio Redirection. The VM is able to
directly use the host audio HAL (Hardware
Abstraction Layer) to playback the sound.

Our display acceleration is able to reach
average of 27~28FPS (Frame per Second). Together
with the six features mentioned above, these are
primarily factors that set us apart and bring us on
the same position as existing indirect competitors
(e.g. Samsung, VMware MVP). Furthermore,
ongoing works are being done to improve the 3D
graphic support and acceleration on the VM

Table 1 Host Overhead Measurement

Overhead of the
host when

Memory
(MB)

Energy
(mAh) per

10 min

Current
(mA)

(a) KVM turned off 854.81 3.046 18.28

(b) KVM turned on
with no VM is
running

858.37 3.146 18.88

(c) KVM turned on
with one VM is
running

866.12 17.06 102.36

https://docs.google.com/forms/d/12JxxWDfvbo4shF6-AoWzpJ-abEX7XqK5lwDLq8jw3k4/viewform?pli=1&edit_requested=true

64 ICT Journal No.165

Table 1 presents the host memory and power
consumption overhead of current prototype for
different cases before and after KVM
(hypervisor) is turned on as well as before and
after a VM is being run. The memory usage’s
range is around 1181 to 1308 MB while the
electric current indicates an increment from case
(a) to (c). The case (c) which is the case when
one VM is running shows current drawn of
102.36 mA, yet the case (a) which is the
baseline has already used up 18.28 mA.
Therefore, host drawn additional current up to
102.36 - 18.28 = 84.08 mA as an impact of
running one VM.

Table 2 Individual Overhead Measurement

Individual Overhead Memory
(MB)

Energy
(mAh) per

10 min

Current
(mA)

(a) A browser app 270 54.4 326.4

(b) An idle VM 566.5 31.25 187.5

(c) A VM running an
active browser app 568.5 72.55 435.3

Comparison of a browser app running on host
smartphone, an idle VM, and a VM running
active browser app inside it is presented in
Table 2 for the reader to have some intuitive
overhead estimation of running one VM in our
prototype. As in the second column, memory
usage of a VM can vary depending on the initial
assignment, in this case it is assigned 512MB
initially. Interestingly, case (a) and (c) gives us
comparison of a browser app and VM running
browser app which indicates that running a VM
only requires approximately 33% more resource
than in running browser app.

Table 3 Virtualization Storage Footprint

KVM
module
(kB)

QEMU
executable
(kB)

Zenfone2
kernel
w/o KVM
(kB)

Zenfone2
kernel w/
KVM(kB)

Disk
Usage 896.1 32,710 12,816 13,047

As shown in Table 3, there are four major
storage footprint incurred by our virtualization
technology. The first column is the total storage
occupied by kvm modules, namely, kvm_intel.ko
and kvm.ko. Next column, a modified QEMU
executable file is required to run each VM image
in Android environment which used up 32.7MB
of disk. This size is relative large due to porting
effort done in porting QEMU from Linux to
Android environment so that some dynamic
libraries were made into one static executable
file. Importantly, the last two columns show the
size of Zenfone2 kernel images before and after
KVM was built into the kernel.

4．Virtual Mobile Infrastructure

4.1 Design Principle and Architecture

The key principle of VMI is that the mobile
VMs are residing at the remote server and users
connect to the VM and stream back the screen
over the network. As such, in BYOD solution,
client smartphone doesn’t suffer from heavy
overhead of running VM or running some device
management processes.

Figure 2 SVMP VMI Architecture

Leveraging SVMP (Secure Virtual Mobile
Platform), a free and open source project , our

65 第165期　電腦與通訊免費訂閱

early working prototype for VMI has been
achieved. Figure 6 shows the architecture and
the workflow. Firstly, the client-end connect to
the SVMP Overseer through a native app for
authentication and afterward the connection is
redirected to SVMP Server which is acting as
the proxy and also redirecting the connection to
the designated VM. Lastly, the connection is
received by the SVMP daemon which is running
inside the VM. Once the connection to VM is
established, the VM sends the video steam via
WebRTC (Web Real-Time Communication)
protocol.

Furthermore, SVMP is also designed to be easily
deployable as an application on top of existing
virtualization systems and public/private clouds
like OpenStack.

4.2 Implementation Details

Unlike traditional remote desktop applications
designed for keyboard and mouse input, SVMP
lets users interact naturally with remote
applications using native mobile inputs like
multi-touch, location, and sensors for better
interaction between client app and remote VM.
Thus SVMP has added a set of virtual input
devices, video streaming output, and some other
customizations to enable a rich remote access
experience. More details are shown in figure 7.

Figure 3 SVMP Virtual Device Structure

As in figure 7, modification of the VM
(Androidx86) source code is required in
achieving a more natural, rich and user -friendly
interaction between the remote client and the
VM. The SVMP Daemon, Touch Input, Sensors,
Location update, Intent and Notification, Video
are the components that require modification.

(1) The SVMP daemon is the background
service running in the VM that is the
primary entry point of client user input to
the VM.

(2) The touch input events which are
generated on the client app are forwarded
to the VM using protocol buffers and are
handled by SVMP daemon by injecting
them to the VM as they are received.

(3) Sensor events generated on the client app
are forwarded using protocol buffers by
SVMP daemon to the local listening
socket on the VM. Then, the SVMP HAL
module libsensors listens to the socket
and processes the actual sensor events.

(4) Location events are communicated both
ways between the client app and the VM
using protocol buffer messages. Any
subscriptions intents requested by apps
from the LocationManager on the VM are
passed back to the client app. The client
then passes the Location information to
the VM.

(5) Exchange of intents between the SVMP
client app and the VM is supported by
SVMP. For example, when users try to
call a phone number in the VM, the
SVMP client app is able to receive the
ACTION_DIAL intent. Furthermore,
notifications received from the VM will
also be shown from the client app.

(6) Video output of VM, at the lowest level,
will be displayed to a Virtual
FrameBuffer (VFB) device from Linux
kernel instead of to a real video device.

https://docs.google.com/forms/d/12JxxWDfvbo4shF6-AoWzpJ-abEX7XqK5lwDLq8jw3k4/viewform?pli=1&edit_requested=true

66 ICT Journal No.165

Frames written to VFB are copied after
the screen has been fully updated and
then fed to the WebRTC subsystem frame
by frame for video encoding and
streaming. On the receiving end, the
source stream from the VM simply
appears as a standard video streaming
source. Thus, the client app just handle it
as a standard WebRTC video stream.

4.3 Experimental Results

Our experiment with SVMP project was done by
using Androidx86 VM image that has been
integrated with SVMP daemon. The result is
fairly good. In terms of the features, we have
verified the multi-touch, screen rotation, GPS
sensor forwarding and dial-out. In terms of
sleekness, it still highly depended on the
internet connection speed. Moreover, some
modifications such as fake IMEI and WiFi-MAC
address number provider have been implemented.
However, there is still a long road to go, issues
such as 3D virtual GPU support or pass -through
still be a challenging issues and also how to
make the VM seems to be as similar as physical
phone remains to be challenges for us.

５．Conclusion
In this paper, we have implemented a

prototype of Virtualized Smartphone on a
commercially available smartphone and
measured performance, which interestingly is
close to native user experience such that it is
considered to be mature enough for delivering a
commercial-grade BYOD virtualized smartphone.
Virtual Mobile Infrastructure prototype which is
derived from SVMP project, have also portrayed
an almost ready framework to deliver a
thin-client BYOD solution today. With
smartphone virtualization technology, we are
trying to enable brand mobile device vendors a
way to cut-in enterprise BYOD security market,

and to create unique smartphone features other
than only UI and app customization available
today. Our future works will focus on continuing
to maximize runnable apps inside an Android
VM or a non-virtualized ARM device to make
sure users get exactly the same experience as the
one from a native smartphone. For instance,
GPU virtualization is still not available for
Android VM; real-time multimedia streaming
such as Camera, Voice sensors or live media
playback are also challenging issues in most
enterprise network infrastructures, the limited
end-device computing and memory resources.

Reference
[1]Elden Nelson,“ BYOD and cloud are top

data breaches and malware risks, survey
shows,”
http://www.csoonline.com/article/2906359/d
ata-breach/byod-and-cloud-are-top-data-brea
ches-and-malware-risks-survey-shows.html,
Apr 6, 2015.

[2]Ji-Eun Lee, Se-Ho Park and Hyoseok Yoon,”
Security policy based device management for
supporting various mobile OS,” Computing
Technology and Information Management
(ICCTIM), 2015 Second International Conference
on Date of Conference, pp.156-161, 21-23 April
2015.

[3]V. Munshi, Virtualization: Concepts and
Applications, The ICFAI University Press,
2006.

[4]“Virtualization” [online]. Available:
https://en.wikipedia.org/wiki/Virtualization

[5]Xiaoyi Chen,“ Smartphone virtualization:
Status and challenges,” Electronics,
International Conference on
Communications and Control (ICECC), pp.
2834 – 2839.

[6] Shakuntala P. Kulkarni1, Prof Sachin
Bojewar,” Survey on Smartphone
Virtualization Techniques,” International
Research Journal of Engineering and

http://www.csoonline.com/article/2906359/data-breach/byod-and-cloud-are-top-data-breaches-and-malware-risks-survey-shows.html
https://en.wikipedia.org/wiki/Virtualization

67 第165期　電腦與通訊免費訂閱

Technology (IRJET), vol. 02, Issue: 04,
pp.371-376, July-2015.

[7] Justin Marston,” Virtual Mobile
Infrastructure: Secure the data and apps,
in lieu of the device,”
http://www.networkworld.com/article/293
7789/mobile-security/virtual-mobile-infras
tructure-secure-the-data-and-apps-in-lieu-
of-the-device.html, Jun 18, 2015.

[8]Eric Y. Chen and Mistutaka Itoh,” Virtual
smartphone over IP,” IEEE International
Symposium on World of Wireless Mobile
and Multimedia Networks (WoWMoM),
2010, pp. 1 – 6.

[9]Masashi Toyama, Shunsuke Kurumatani,
Joon Heo, Kenji Terada, and Eric Y.Chen,”
Android as a server platform,” IEEE
Consumer Communications and Networking
Conference (CCNC), 2011, pp.1181 – 1185.

[10] “Virtual Smart Phones in the
Cloud“ [online]. Available:
https://svmp.github.io/index.html

[11] “SVMP System Design and Architecture”
[online]. Available:
https://svmp.github.io/architecture .html

[12] “Open source SVMP project”:
https://github.com/SVMP

[13] Android-x86.org,
http://www.android-x86.org/

Authors

卓 傳 育 (Chuan-Yu Cho)
received his Ph.D. degree in
Computer Science from
National Tsing Hua
University, HsinChu, Taiwan,
in 2006. He is now a senior
software engineer and manager
of Datacenter System Software
(Div-F) division hypervisor
team, Information Comm.
Research Lab at ITRI. His
research interests include
cloud computing,
virtualization technology,
cyber security, image
processing, video coding and
streaming.

林 浩 澄 (Houcheng Lin)
received his Master degree in
CSIE from National Chiao
Tung University on 1997. He
is now Senior software
engineer of Datacenter System
Software (Div-F) division
hypervisor team, Information
Comm. Research Lab at ITRI.

洪茂榮 (Anthony) received his
B.Sc. degree in CS from
National Chiao Tung
University in 2015. He is now
a member of Datacenter
System Software (Div-F)
division hypervisor team of
Information Comm. Research
Lab (ICL) at ITRI

http://www.networkworld.com/article/2937789/mobile-security/virtual-mobile-infrastructure-secure-the-data-and-apps-in-lieuof-the-device.html
https://svmp.github.io/index.html
https://svmp.github.io/architecture.html
http://www.android-x86.org/
https://github.com/SVMP
https://docs.google.com/forms/d/12JxxWDfvbo4shF6-AoWzpJ-abEX7XqK5lwDLq8jw3k4/viewform?pli=1&edit_requested=true

