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
Abstract—Virtualization technology has been widely adopted 

to reduce IT cost, to improve management and to increase service 
reliability by consolidating hardware servers and providing 
automatic virtual infrastructures. However, the reliability of 
virtual machines running on virtualized servers is threatened by 
hardware failures beneath the whole virtual infrastructure, but 
nosy hypervisors that essentially support virtual machines cannot 
be trusted. To protect virtual machine from hardware failures, 
virtualization-based fault tolerance system for an individual 
virtual machine is designed, implemented and evaluated. And we 
choice epoch-based fault tolerance method because it can support 
multi-core platform and it can save the backup machine 
performance overhead compared to log replay method. However, 
the epoch-based method will bring the long latency overhead, so 
we need to optimize processor usage and save backup bandwidth. 
We propose some optimization method such as tracking of dirty 
virtual device states to saving processor usage and fine-grained 
dirty region tracking to saving backup bandwidth. Furthermore, 
we solve the issue about the unexpected long time of snapshot 
using pending list method. And we also solve the TCP 
performance issues due to holding output buffer using fake ACK 
optimization. Finally, we do some experiment to show the
performance result about our optimization and we can gain a 
low-overhead and low-latency virtualization-based fault tolerance
system.

Index Terms—Fault Tolerance, Hypervisor, Live Migration, 
Optimization, Virtual Machine, Virtual Machine Monitors, 
Virtualization 

I. INTRODUCTION

irtualization technology allows multiple VMs (Virtual 
Machines) running simultaneously on a physical server. In 

which, all physical resources are virtualized as resource pools 
of virtual CPU, memory, network card and various virtual 
devices. With virtualized resources, multiple operating systems 
could share a single set of physical hardware to not only 
improve the hardware utilization with less power consumption, 
but also dramatically enable the elastic software defined 
manageability, such as live migration, memory snapshot, 
dynamic provisioning, failed VM restart based high availability 
service and virtualization-based fault tolerance, …etc. 

Among these software-defined management features, VM 
live migration [1] is considered the most important benefit 
brought by virtualization because it is the underlining 
supporting technology to enable zero-down time maintenance 
service level agreement (SLA). VM migration technology 
could move a running VM form one physical machine to 
another without interrupt its service during the complete of 

migration process. To minimize the migration time, shared 
network storage system are generally utilized to save the time 
for migrating storage system in modern virtualized 
infrastructure. A typical VM live migration configuration is 
shown in Fig. 1. This system can let VM to migrate to other 
physical machine quickly because only states of CPU, memory 
and devices are necessary to migrate to target machine while 
migration of bulk data on storage system is not needed. That is, 
to migrate a VM from a physical machine 1 to physical machine 
2, it is not necessary to transfer the VM’s disk image together; 
instead only running memory and device status is considered 
and as a result, it is possible to migrate a VM much faster than 
in a non-shared storage infrastructure. In general, live 
migration has been a common practice in virtualized 
infrastructure and is a powerful tool to save power and 
eliminate service interrupt during hardware upgrade. 

Fig. 1. VM live migration 

However, unexpected service downtime may still occur 
because of hardware accidents, such as power failures or 
hardware failures, leaving service administrators no time to live 
migrate the affected VMs. As carrier grade services usually 
require highly available, uninterrupted service infrastructure, it 
becomes a new challenge while carriers start to migrate their 
services on to virtualization infrastructure, which is already a 
global trend to adopt network function virtualization 
infrastructure (NFVI) in telecomm datacenter. In this paper, we 
propose a virtualization-based fault tolerance architecture,
which can provide fault tolerance service with controllable low 
latency while doing efficient and continuous memory status 
synchronization. 

Virtualization-based fault tolerance system is shown in Fig. 2. 
It can provide uninterrupted VM services when VM stops 
unexpectedly. Consistent states of virtual machine are 
repeatedly synchronized to backup physical machine. We name 
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the running VM as master VM, the backup on backup physical 
machine as slave VM. When unexpected events happened, the 
slave VM can take over all ongoing jobs of the master VM 
because virtualization-based fault tolerance system provides a 
consistent view of service for clients. Any results on master 
VM without synchronizing to slave VM will not be exposed to 
master VM. If the hardware failure happened, the slave VM can 
take over the master VM’s job and provide uninterrupted 
services for clients. 

Fig. 2. Virtualization-based fault tolerance system 

 There are two ways to implement the virtualization-based 
fault tolerance system. One is to log all asynchronous events of 
the master VM and deterministic replay the logs on the slave 
VM [2]. Another one is snapshot mode in which snapshots of 
master VM are taken and backed up to slave VM frequently. In 
case of the failure of the master VM, the slave VM will take 
over and start executing. 
 The performance overhead which uses deterministically 
replaying logs on the slave VM with single VCPU is within 
10%. To support replay mechanism with multiple VCPUs is 
difficult, as tracking memory access order for multiple VCPUs 
is not efficient. Because the slave VM runs as the master VM 
except it is not exposed like its outputs will not be transferred to 
users, it will take the same computing resources as master VM. 
 Remus [3] implemented epoch-based snapshot recovery on 
Xen [4]. The master VM executes during the epoch period and 
then it will be paused and its snapshot is taken. After that, 
master VM can continue running while its snapshot is 
transferred to slave VM simultaneously, which is named 
speculative execution. When master VM is running, its outputs 
are buffered In case of VM crashing the outputs will not be 
exposed to end users. At the time when the snapshot is 
synchronized to the slave VM, the outputs are flushed. Remus 
is based on live migration of VM [1][5]. 
 One major overhead for epoch-based VM fault tolerance is 
the synchronization of memory states. Live migration faces the 
same issue when it tries to reduce the migration time. The 
pre-copy stage of live migration is similar to fault tolerance in
that the hypervisor turns on dirty page tracking for VM and 
keeps transferring dirtied VM states to target VM. Live 
migration will stay in pre-copy stage until the dirtied pages 
become small or maximum number of iterations. Then the VM 
is suspended and the final dirtied pages are transferred. 
Memory deduplication is used by [6] to exploit the similarity in 
memory pages in order to avoid transferring redundant Data. 
Lu and Chiueh propose to speculatively transfer dirtied pages 
during replication in hope of the number of dirtied pages is 

reduced at the end of replication [7]. Svard et al. [8] and Du et al. 
[9] avoid to transfer hotspot pages during iteration. 
 To provide fault tolerance for VMs, Remus [3] implemented 
epoch-based fault tolerance on Xen [4] platform and Kemari 
[10] implemented event-based fault tolerance on KVM. The 
main point here is not to expose crashing to end user. That is, 
the Outputs (for example, network packets and disk writes) of 
the VM are hold of the VM is hold in a buffer until the states of 
VM of current epoch is backed up. If the VM crashes before the 
backup is finished, the outputs in the buffer will be simply 
discarded but the previous backup VM will continue running 
and produce new consistent outputs without end users' notice. 
Because the outputs are buffered and only flushed when backup 
is finished, the frequency of backup must be very high so as to 
reduce the latency. For event-based fault tolerance, we cannot 
predict what time we release the output buffer. In other words, 
we cannot control or bound the latency. So we choose the 
epoch-based fault tolerance method and optimize it to meet our 
expectations.

II. TECHNICAL CONSIDERATION TO DELIVER AN EFFICIENT FAULT 
TOLERANCE SOLUTION

A. Epoch-based fault tolerance method system 
 In an epoch-based fault tolerance method system, an epoch 

is a backup cycle and consists of four stages: running stage, 
snapshot stage, transferring stage and flushing stage, as shown 
in Fig. 3. The first stage is the running stage which a master VM 
receives requests from end users and produce outputs. The 
outputs in this stage cannot be exposed to end users or physical 
disks directly because if so, when the master VM crashes and 
the slave VM takes over, the slave VM may not produce the 
same outputs. The end users or the file system underneath may 
suffer from inconsistency by the different outputs. Thus the 
outputs must be hold in an output buffer. However, the output 
buffer cannot be held too long, because holding the buffer will 
increase the response latency. 

Fig. 3. Epoch-based fault tolerance stage 
  

When the VM runs for an epoch time, an epoch timer will 
trigger the VM into snapshot stage. The purpose of snapshot 
stage is to make a local copy for the master VM so that the 
master VM can run again without waiting for finish of states 
synchronization so as to improve performance. Then, another 
thread will transfer the snapshot simultaneously while the 
master VM is running. This behavior is called speculative fault 
tolerance. 

The simplest way to take snapshot is to copy the whole VM 
states into local memory. However, since the master VM is 
totally paused during the snapshot stage, the time length of 

https://docs.google.com/forms/d/12JxxWDfvbo4shF6-AoWzpJ-abEX7XqK5lwDLq8jw3k4/viewform?pli=1&edit_requested=true
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snapshot stage affects both output latency and throughput. 
Besides, the time to take a snapshot is about fixed. So the 
smaller the epoch sizes the lower throughput we will get. If 
epoch size is 5ms and snapshot stage is 1ms, we will lose at 
least 20% throughput from snapshot stage. 

For transferring stage, our design is based on the assumption 
that there is a dedicated 10G bandwidth between the two 
physical machines where master and slave VMs are running,
considering the huge size of data to be transferred in short time.
It is not necessary to transfer whole snapshot to the slave VM, 
because the slave VM has already held the snapshot of the 
previous epoch. So during transferring stage, the fault tolerance 
thread need only transfer all the dirtied parts to the slave VM. 
When transferring finished, all the outputs in the output buffer 
will be flushed to outside, such as end users and physical disks. 
The last stage is output stage. As shown in Fig 3, the extra 
latency penalty is composed of all four stages, in which running 
stage and flushing stage are intrinsic to our design but snapshot 
stage and transferring stage can be shortened by optimizations. 

B. Unexpected long time of snapshot 
When we evaluate the network speed of VM on fault 

tolerance mode (FT mode), we use wget program to download 
file from VM to client and from client to VM. The result is 
shown on Table I.

TABLE I 
THE RESULT OF VM NETWORK TRANSFER SPEED EXPERIMENT. 

In Table I, we use two columns to show the result because 
sometime the VM will stuck when downloading files and the 
transfer speed will become very slow. We call this situation is  
“blocked”. And we do the profiling of every stage to find which 
blocked reason is. And we find the snapshot time is very huge.
The result is shown in Table II. 

TABLE II. 
THE RESULT OF SNAPSHOT TIME. 

In TABLE II, we can see no matter it has workload or not, 
the snapshot time always less than 1ms (millisecond). But when 
the blocked happened, the snapshot time increase to 100ms to 
600ms. That means some operations spend much time in 
snapshot stage blocked. After we profiled snapshot stage, we 
find out that the qemu_aio_wait function will use most of 
snapshot time when the blocked situation happened. The 
qemu_aio_wait function waits every aio (asynchronous 
input/output) device finished its request and call the callback 
function. If we do not wait for all aio requests, some aio 
requests will not be finished before the end of epoch. That 

means when doing failover, the unfinished aio requests will 
disappear, because the unfinished status will not be saved in 
any backup. Therefore, we need to find a backup mechanism to 
hold this information. We talk about this solution on next 
chapter. 

C. TCP Performance issues due to holding output buffer 
Because we flush all outputs until transfer stage is finished, 

the TCP performance would be also affected. For example, 
when the VM loads a web page, the overhead of response time 
is very large, as TABLE III shows: 

TABLE III
VM WEB PAGE LOADING TEST

According to Table III, we find that if the web page size is 
larger, the response time is slower. Transferring big web pages 
in FT mode is very slow. To find out the root cause, we do 
another experiment to measure the output requests released on 
every flush stage. The result is shown in Fig 4.

Fig. 4. The release output requests on every flush stage. 

In Fig. 4, we can see it need to use 14 epochs for TCP to 
reach the highest speed, and for the beginning 13 epoch, TCP 
doesn't reach the full bandwidth the full bandwidth to transfer 
data. That means if the first to 13th epoch is able to transfer data 
with full speed, the transfer speed will be increased.  

After reviewing the code, we find that the problem resides in 
TCP congestion window (CWND). In general, the transmission 
speed is limited by two factors: congestion window held by the 
sender and receive window held by the receiver. The sender 
maintains the value of congestion window. If the sender 
receives an ACK, it updates the value of congestion window. 
However, in FT mode, all output requests would be held until 
the backup finished, so the TCP packets are not sent to the 
receiver immediately, and the sender cannot receive ACKs 
from the receiver not as soon as non-FT mode Therefore, the 
congestion window would not increase quickly, so the TCP 
performance is bad. 

III. OPTIMIZATION

As mentioned in the previous chapters, the snapshot stage 
and transferring stage can be shortened by adding some 
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optimizations. We propose some optimizations to reduce the 
time of snapshot stage and transferring stage in this chapter: 

A. Tracking of dirty virtual device states 
The major components of one VM include CPU states, 

memory states, virtual device states, external storage states as 
well as external environment states. The first three classes of 
states are self-explanatory. The external environment state is 
the recognition of the VM to other users and systems. For 
example, packets targeted to this recognized VM will be routed 
and switched to this VM. If all the states are backed up on the 
slave VM and the external environment states are set up 
properly, the slave VM will seamlessly take over master VM's 
role on the crash of master VM. 

One essential step of taking snapshot for the master VM is to 
transfer all states of virtual devices to the slave VM. And the 
critical point is to take the snapshot for virtual devices in a very 
short time considering the high frequency the master VM is 
backed up to the slave VM (up to 200 times per second). In our 
testing environment, a VM has around 30 virtual devices, and 
the original migration codes take about 2ms to collect all the 
virtual device states. This means the master VM will be paused 
for 2ms for taking snapshots of virtual device states, which 
results in an unacceptable performance overhead. Another 
drawback is that the size of all the virtual device states is around 
500Kbytes. For our chosen 5ms epoch time, it means that 
taking snapshots for virtual device states needs a backup 
bandwidth of about 100Mbytes/second. 

A further observation is that most virtual device states keep 
unchanged within an epoch. So if only the modified virtual 
device states are transferred in each epoch, then the bandwidth 
waste will be reduced. A simple method is to save every virtual 
device state in a buffer and compare it with the state of this 
epoch. If these two buffers have the same contents, then we will 
not transfer it. If the contents are different, we can only transfer 
the difference between them. However, this method requires 
collecting all virtual device states in every snapshot stage, 
which is inefficient. 

Another observation is that most virtual device states reside 
in userspace memory region of QEMU, as Fig. 5 shows. When 
the guest OS executes an I/O instruction, there will be an 
exception that causes a VMExit [11] [12]. The exception 
handler inside KVM module will give the control to QEMU, 
which will in turn deliver the control to virtual device codes. 
Virtual devices will act according to their current device states. 
This step varies for different virtual devices, and it requires a lot 
of engineering effort to track the virtual device states change. 
On the contrary, because virtual device codes accesses their 
virtual device states by QEMU's MMU, there is a workaround 
method to find out all the changed states. The x86 architecture 
manual [11] [12] tells us that in paging mode whenever a page 
is modified, the dirty bit in PTE (page table entry) will be set. 
So in our case, the virtual device state for a virtual device will 
be allocated exclusively in memory pages. At the end of each 
epoch, the dirty bit of PTEs will be scanned. If one dirty bit is 
set for PTEs of one corresponding virtual device states, then the 

dirty bit is cleared and TLB will be flushed to invalidated old 
PTE. The virtual states will be collected and sent to the slave 
VM. 

In this way, only a few (4~5 for every 5ms) virtual device 
states are modified and backed up to slave VM. The time spent 
to collect the virtual device states is neglected, and the resulting 
size is reduced to around 30KB. The original migration codes, 
which were designed merely for migration and not for frequent 
backup, are still used to collect and load VM states, saving a lot 
engineering efforts. With the help of underlining operating 
system and the MMU hardware, the pause time of the master 
VM is reduced and the bandwidth are saved for other 
applications. 

Fig. 5. The virtual device architecture in QEMU/KVM 

B. Fine-grained dirty region tracking 
In this section, we will first describe the characteristics of the 

memory page dirtying of a virtual machine: high number in 
short period and small partial modification within one page. 
Then the reason is explained why common compression 
methods cannot be applied here because of their lower 
compressing rate and high CPU usage. Then, the scatter-gather 
method used by our low latency virtualization-based fault 
tolerance system is discussed in the term of CPU usage and 
bandwidth saving. Also SSE instructions are used in the 
scatter-gather step to improve the performance. 

Memory state is the main part of a virtual machine, holds all 
critical kernel data structures, user application data and other 
essential information for the guest OS. As in live migration, 
memory state handling takes the major part of time in fault 
tolerance. While the master virtual machine is running, it will 
process hardware inputs and produce outputs. In this process, a 
bunch of memory pages will be modified. The baseline design 
of our low latency virtualization-based fault tolerance system 
defines that at the end of each epoch, slave virtual machine will 
have the same memory states as the master virtual machine. As 
a result, the memory states on slave virtual machine will be 
synchronized with master virtual machine once per epoch. 

The common way to synchronize memory pages from master 
virtual machine to slave virtual machine is to write protect all 
pages from guest OS and to track the Pages modified by guest 
OS. If master virtual machine does not make enough pages 

https://docs.google.com/forms/d/12JxxWDfvbo4shF6-AoWzpJ-abEX7XqK5lwDLq8jw3k4/viewform?pli=1&edit_requested=true
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dirty intensively, a normal virtual machine only writes a small 
portion of its memory pages in one epoch like 5ms. Fig. 6 
shows the growing of the number of guest pages get dirtied as 
the guest OS runs. Both kernel compilation and SpecWeb2005 
produce hundreds of dirtied pages within a short time like 5ms. 
To write protect pages for guest OS, hypervisor marks PTEs 
read-only in shadow page table. When guest OS tries to write 
the this page, page fault happens and hypervisor will mark this 
page as dirtied, then hypervisor makes this page as writable in 
shadow page table so that guest OS can write to this page. The 
dirtied pages can also be collected by hardware support like 
EPT Access/Dirty feature [11]. 

Fig. 6. The number of dirtied pages grows as VM is running. 

The page dirtying behavior of virtual machine has two main 
characteristics: high number and partial modification. Fig. 6 
shows that for kernel compilation and SpecWeb2005, the 
virtual machine writes to up to 800 pages within 5ms, or a rate 
of about 600Mbytes/second. The baseline design is to support 
fault tolerance for multiple virtual machines with a dedicated 
10G NIC. But the dirty rate for one merely one VM lefts little 
room for other virtual machines. If the master virtual machine is 
not slowed down too much to sacrifice performance for 
bandwidth saving, one dedicated 10G NIC can support two 
master virtual machines. We know from experiments that
averagely only around 12% of one memory page is modified 
within one 5ms epoch, as shown in Fig. 7. This finding means it 
is unnecessary to transfer whole dirtied page to slave virtual 
machine. If there exists a solution to transfer the only modified 
bytes in one page, then bandwidth requirement of one virtual 
machine can be reduced to as small as 75Mbytes/second, which 
theoretically will enable up to 13 virtual machines be fault 
tolerant with a dedicated 10G NIC. 

Compression methods are used to reduce the transferred 
memory size in many proposals. Fig. 7 shows that after a page 
is exclusive-or with its original page, Zlib [13] can generate 
compressed buffer size comparable to the modified bytes of one 
page. However, commonly known compression algorithms like 
Zlib, lz4 and lz0 have two drawbacks under such circumstance: 
lower rate to process input and high CPU usage. According to 
experiments, these algorithms can compress around 2000 pages 
per second even configured with lowest compress level. In 
addition, all of them use all of one CPU time during 
compressing. Further experiments show that the compressing 
rate is severely affected when a lot memory copy happens 

during the process. 

Fig. 7. Statistics of dirtied pages for average modified bytes, block size with 
scatter-gather and compression results. 

Below we will describe a scatter-gather method that utilizes 
SSE related instructions to implement a fine-grained dirty 
region tracking algorithm, designed with zero memory copy in 
mind. Firstly we will introduce a data structure similar to radix 
tree, as Fig. 8 shows. A page (4096 bytes) is divided into 
continuous blocks, the size of which depends on how many bits 
the SSE instructions can handle on the running processor. 
Assume the block size is 512 bits or 64 bytes, and then a page 
can be divided into 64 blocks. If one block keeps unmodified 
during one epoch period, at the end of this epoch this block do 
not be transferred to the slave VM. Only those modified blocks 
will be transferred to the slave VM. The slave VM already 
received the pages at the previous epoch, so by applying the 
modified blocks to the reference page, the slave VM will get the 
same content of this dirtied page as on master VM. Alongside 
with the dirtied blocks, the master VM sends the radix tree data 
structure to the slave VM as the positions of the dirtied blocks. 
The radix tree is composed of two levels of dirty bit headers. 
Each dirty bit header is one byte long. Level one dirty bit 
header is one byte long, which means each bit represents data 
length of 4096 bytes / 8 = 512 bytes. If the ith 512 bytes inside 
the page are dirty, then the (i-1)th bit is set in the level one dirty 
bit header. For each dirtied data blocks of 512 bytes, there is a 
level two dirty bit header, each bit represents a data length of 
512 bytes / 8 = 64 bytes. Similarly, if the ith block of size 64 
bytes is dirtied within the 512 bytes, the (i-1)th bit is set in the 
level two dirty bit header. So one bit in level 1 dirty bit header 
corresponds to one level 2 dirty bit header. If one bit is not set in 
level one dirty bit header, there doesn't exist a corresponding 
level two dirty bit header for this bit, and there are no data 
blocks. 

Fig. 8. The radix-tree like structure for gathering fine-grained dirtied block 
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The bit header is not necessarily a radix-tree like structure. It
can be single bitmap. For a block size of 64 bytes, the length of 
the single bit header is 4096/64/8 = 8 bytes. The header size is 
small even if all 8 bytes are sent. The radix-tree is used for 
smaller block sizes. If the block size is 8 bytes, then the length 
of the single bit header is 64 bytes. An extra 64 bytes for each 
dirtied page will waste bandwidth.  

To generate the radix tree and find out the dirtied blocks 
within one page, an efficient method is required to decide if one 
particular block is modified. For any guest physical page, a 
backup is copied before it is really modified by guest VM.
Experiments show that all methods that require scanning the 
page content cannot reach satisfying processing rate. Our best 
highly optimized algorithm to compare blocks can only process 
22,000 pages per second, while SpecWeb2005 can produce 
100,000 dirtied pages per second. Not mention the comparison 
based on processor consumes 100% CPU usage. Further 
optimization depends on the SSE related instructions, which 
will process 16 bytes, 32 bytes or 64 bytes data each time. 
Firstly one block in the backup page is loaded into SSE register, 
then the corresponding block in the page being used by master 
VM is loaded into another SSE register. After these two 
loadings, these two registers are exclusive or and whether this 
block was modified or not based on the XOR result. The 
comparison based on SSE instructions can handle up to 90,000 
pages per second, that is, 450 pages per 5ms. What is more, it 
consumes 40% CPU usage for one VM. 

C. Aio request pending list to solve unexpected long time 
snapshot 

As mentioned in previous chapters, if we disable 
qemu_aio_wait function, some aio requests will be lost because 
this unfinished status is not be saved on any backup. So we 
need a method to back up the unfinished aio request. 
Specifically, we need to record all aio requests until it finished. 
And we call this record list as pending list. First, we need to 
find out how many types of aio request we should record. And 
we find only disk write will produce a long flush time. So we 
only need to record the disk write events. 

The steps of recording write request are shown below: first, 
we need to hold on every write request until flush stage because 
the output buffer need to be held until flush stage as described 
in chapter 2, and save these requests to a temporary list. Then, 
during flush stage, we issue all requests from temporary list and 
save all issued requests to pending list. Third, the temporary list 
and the pending list would be backed up to slave VM. Fourth, if 
there are new requests issued from temporary list, the request 
will append to the pending list. Finally, if the request finished, 
we will remove it from the pending list. 

We can let the disk write aio requests be asynchronous, which 
means taking snapshot can be done without waiting for the disk 
write requests produced by previous epoch finished. Therefore, 
the qemu_aio_wait function can be disabled. 

D. TCP performance optimization 
To increase TCP transmission speed, we need to increase the 

congestion window in the guest OS. In order to increase 

window size of guest OS, senders in guest VM should receive 
ACKs without too long latency. 

In order to increase the congestion window, we can send fake 
ACKs to deceive Guest OS, so the congestion window grows 
and the transmission speed increases. However, in this scenario, 
if any packet is lost, we have to deal with it by ourselves; 
otherwise, Receiver will never receive the lost packets. 
Therefore, we need to back up all packets and have a TCP stack 
in QEMU to handle all congestion events, such as packet lost. 
We implemented the prototype, and the result is shown in 
chapter IV. 

IV. EXPERIMENTAL RESULTS

We evaluate our results to see the difference between FT 
without optimizations and with optimizations. The first 
experiment is to test the response time and the system 
performance overhead. The experiment environment is shown 
in Fig. 9. 

Fig. 9. The experiment environment 

About the experiment environment, we use two physical 
machines, where one is the primary host, which is responsible 
for running the master VM and another is the backup host,
which is for receiving backup status for slave VM. And we use 
a client machine to ping the master VM for measuring the 
response time. On the other hand, we run the kernel compiling 
process and measure its execution time on the master VM, 
because we need to evaluate the overhead of our low latency 
virtualization-based fault tolerance system. The result is shown 
in TABLE IV. 

https://docs.google.com/forms/d/12JxxWDfvbo4shF6-AoWzpJ-abEX7XqK5lwDLq8jw3k4/viewform?pli=1&edit_requested=true
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TABLE IV
THE EXPERIMENT RESULT

In TABLE IV, we can see the response time is about 400 
times slow compare with fault tolerance disabled without any 
optimization. And the compile time is about 40 times slow 
compared with fault tolerance disabled. But if we use the SSE 
optimization (Fine-grained dirty region tracking), we can 
reduce the response time to 64.2ms, and compile time is only 
02’36”. By using the version with the tracking of dirty virtual 
device states optimization, the response time is only 9.8ms, but 
the compile time will increase to 11’39”. The reason is that our 
response time is reduced and the backup frequency is increased, 
so the overhead will also increase. Finally, we run the 
experiment by using the version with the pending list 
optimization. The response time is increase to 12.3ms, but we 
can get the compile kernel time only 07’19”. Although the 
performance on VM is not good, the response time is still short. 

We also test the TCP performance with our fake ACK 
optimization, and the result is shown in Fig. 10. 

Fig. 10. The TCP performance with fake ACK optimization 

In this experiment, we send 100Mbytes data from VM with 
fault tolerance to a client. With fake ACK optimization, we 
only need about 11 epochs to transmit all 100Mbytes. Without 
fake ACK optimization, it needs about 38 epochs. And the 
average number of packets transmitted in an epoch with and 
without optimization is 342.667 and 38.125, respectively. The 
TCP performance is largely increased with our fake ACK 
optimization. 

V. CONCLUSION

To optimize the virtualization-based fault tolerance system, 
we need to consider reducing the snapshot time and transferring 

time. Reducing the snapshot time can let VM has more running 
time within an epoch, so it can increase the VM executing 
performance. Reducing the transferring time can reduce the 
response time of VM because the output will be buffered until 
the flush stage which means the backup finished. As mentioned 
in the previous chapters, the fault tolerance system latency is 
430.6ms without any optimization. But with the SSE 
optimization, the latency is decreased by 85%. Furthermore, we 
add the tracking of dirty virtual device states optimization to 
our fault tolerance system, the latency is also decreased by 85% 
compared with the SSE optimization version. Although the 
latency is increased by 26% with pending list optimization, 
compared with the tracking of dirty virtual device states 
optimization version, the compiling time is still decreased by 
37%. In conclusion, for the latest version of the fault tolerance 
system, the latency and the compiling time are decreased by 
97% and 82%, respectively, compared with the version without 
any optimization. With several optimizations, the performance 
of our fault tolerance system is greatly improved. In addition, 
the VM would run any kind of workload such as CPU-bound or 
IO-bound. We need to let these workload not affect our fault 
tolerance backup job and our fault tolerance backup also not 
affect it, too. In this way, we can get a low overhead and a short 
response time on our virtualization-based fault tolerance 
system. 
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