
68 ICT Journal No.166

Low Latency Virtualization-based Fault Tolerance
Po-Jui Tsao, Yi-feng Sun, Li-Han Chen, Chuan-Yu Cho


Abstract—Virtualization technology has been widely adopted

to reduce IT cost, to improve management and to increase service
reliability by consolidating hardware servers and providing
automatic virtual infrastructures. However, the reliability of
virtual machines running on virtualized servers is threatened by
hardware failures beneath the whole virtual infrastructure, but
nosy hypervisors that essentially support virtual machines cannot
be trusted. To protect virtual machine from hardware failures,
virtualization-based fault tolerance system for an individual
virtual machine is designed, implemented and evaluated. And we
choice epoch-based fault tolerance method because it can support
multi-core platform and it can save the backup machine
performance overhead compared to log replay method. However,
the epoch-based method will bring the long latency overhead, so
we need to optimize processor usage and save backup bandwidth.
We propose some optimization method such as tracking of dirty
virtual device states to saving processor usage and fine-grained
dirty region tracking to saving backup bandwidth. Furthermore,
we solve the issue about the unexpected long time of snapshot
using pending list method. And we also solve the TCP
performance issues due to holding output buffer using fake ACK
optimization. Finally, we do some experiment to show the
performance result about our optimization and we can gain a
low-overhead and low-latency virtualization-based fault tolerance
system.

Index Terms—Fault Tolerance, Hypervisor, Live Migration,
Optimization, Virtual Machine, Virtual Machine Monitors,
Virtualization

I. INTRODUCTION

irtualization technology allows multiple VMs (Virtual
Machines) running simultaneously on a physical server. In

which, all physical resources are virtualized as resource pools
of virtual CPU, memory, network card and various virtual
devices. With virtualized resources, multiple operating systems
could share a single set of physical hardware to not only
improve the hardware utilization with less power consumption,
but also dramatically enable the elastic software defined
manageability, such as live migration, memory snapshot,
dynamic provisioning, failed VM restart based high availability
service and virtualization-based fault tolerance, …etc.

Among these software-defined management features, VM
live migration [1] is considered the most important benefit
brought by virtualization because it is the underlining
supporting technology to enable zero-down time maintenance
service level agreement (SLA). VM migration technology
could move a running VM form one physical machine to
another without interrupt its service during the complete of

migration process. To minimize the migration time, shared
network storage system are generally utilized to save the time
for migrating storage system in modern virtualized
infrastructure. A typical VM live migration configuration is
shown in Fig. 1. This system can let VM to migrate to other
physical machine quickly because only states of CPU, memory
and devices are necessary to migrate to target machine while
migration of bulk data on storage system is not needed. That is,
to migrate a VM from a physical machine 1 to physical machine
2, it is not necessary to transfer the VM’s disk image together;
instead only running memory and device status is considered
and as a result, it is possible to migrate a VM much faster than
in a non-shared storage infrastructure. In general, live
migration has been a common practice in virtualized
infrastructure and is a powerful tool to save power and
eliminate service interrupt during hardware upgrade.

Fig. 1. VM live migration

However, unexpected service downtime may still occur
because of hardware accidents, such as power failures or
hardware failures, leaving service administrators no time to live
migrate the affected VMs. As carrier grade services usually
require highly available, uninterrupted service infrastructure, it
becomes a new challenge while carriers start to migrate their
services on to virtualization infrastructure, which is already a
global trend to adopt network function virtualization
infrastructure (NFVI) in telecomm datacenter. In this paper, we
propose a virtualization-based fault tolerance architecture,
which can provide fault tolerance service with controllable low
latency while doing efficient and continuous memory status
synchronization.

Virtualization-based fault tolerance system is shown in Fig. 2.
It can provide uninterrupted VM services when VM stops
unexpectedly. Consistent states of virtual machine are
repeatedly synchronized to backup physical machine. We name

Low Latency Virtualization-based Fault Tolerance

Po-Jui Tsao, Yi-feng Sun, Li-Han Chen, Chuan-Yu Cho

V

69 第166期　電腦與通訊免費訂閱

the running VM as master VM, the backup on backup physical
machine as slave VM. When unexpected events happened, the
slave VM can take over all ongoing jobs of the master VM
because virtualization-based fault tolerance system provides a
consistent view of service for clients. Any results on master
VM without synchronizing to slave VM will not be exposed to
master VM. If the hardware failure happened, the slave VM can
take over the master VM’s job and provide uninterrupted
services for clients.

Fig. 2. Virtualization-based fault tolerance system

 There are two ways to implement the virtualization-based
fault tolerance system. One is to log all asynchronous events of
the master VM and deterministic replay the logs on the slave
VM [2]. Another one is snapshot mode in which snapshots of
master VM are taken and backed up to slave VM frequently. In
case of the failure of the master VM, the slave VM will take
over and start executing.
 The performance overhead which uses deterministically
replaying logs on the slave VM with single VCPU is within
10%. To support replay mechanism with multiple VCPUs is
difficult, as tracking memory access order for multiple VCPUs
is not efficient. Because the slave VM runs as the master VM
except it is not exposed like its outputs will not be transferred to
users, it will take the same computing resources as master VM.
 Remus [3] implemented epoch-based snapshot recovery on
Xen [4]. The master VM executes during the epoch period and
then it will be paused and its snapshot is taken. After that,
master VM can continue running while its snapshot is
transferred to slave VM simultaneously, which is named
speculative execution. When master VM is running, its outputs
are buffered In case of VM crashing the outputs will not be
exposed to end users. At the time when the snapshot is
synchronized to the slave VM, the outputs are flushed. Remus
is based on live migration of VM [1][5].
 One major overhead for epoch-based VM fault tolerance is
the synchronization of memory states. Live migration faces the
same issue when it tries to reduce the migration time. The
pre-copy stage of live migration is similar to fault tolerance in
that the hypervisor turns on dirty page tracking for VM and
keeps transferring dirtied VM states to target VM. Live
migration will stay in pre-copy stage until the dirtied pages
become small or maximum number of iterations. Then the VM
is suspended and the final dirtied pages are transferred.
Memory deduplication is used by [6] to exploit the similarity in
memory pages in order to avoid transferring redundant Data.
Lu and Chiueh propose to speculatively transfer dirtied pages
during replication in hope of the number of dirtied pages is

reduced at the end of replication [7]. Svard et al. [8] and Du et al.
[9] avoid to transfer hotspot pages during iteration.
 To provide fault tolerance for VMs, Remus [3] implemented
epoch-based fault tolerance on Xen [4] platform and Kemari
[10] implemented event-based fault tolerance on KVM. The
main point here is not to expose crashing to end user. That is,
the Outputs (for example, network packets and disk writes) of
the VM are hold of the VM is hold in a buffer until the states of
VM of current epoch is backed up. If the VM crashes before the
backup is finished, the outputs in the buffer will be simply
discarded but the previous backup VM will continue running
and produce new consistent outputs without end users' notice.
Because the outputs are buffered and only flushed when backup
is finished, the frequency of backup must be very high so as to
reduce the latency. For event-based fault tolerance, we cannot
predict what time we release the output buffer. In other words,
we cannot control or bound the latency. So we choose the
epoch-based fault tolerance method and optimize it to meet our
expectations.

II. TECHNICAL CONSIDERATION TO DELIVER AN EFFICIENT FAULT
TOLERANCE SOLUTION

A. Epoch-based fault tolerance method system
 In an epoch-based fault tolerance method system, an epoch

is a backup cycle and consists of four stages: running stage,
snapshot stage, transferring stage and flushing stage, as shown
in Fig. 3. The first stage is the running stage which a master VM
receives requests from end users and produce outputs. The
outputs in this stage cannot be exposed to end users or physical
disks directly because if so, when the master VM crashes and
the slave VM takes over, the slave VM may not produce the
same outputs. The end users or the file system underneath may
suffer from inconsistency by the different outputs. Thus the
outputs must be hold in an output buffer. However, the output
buffer cannot be held too long, because holding the buffer will
increase the response latency.

Fig. 3. Epoch-based fault tolerance stage

When the VM runs for an epoch time, an epoch timer will
trigger the VM into snapshot stage. The purpose of snapshot
stage is to make a local copy for the master VM so that the
master VM can run again without waiting for finish of states
synchronization so as to improve performance. Then, another
thread will transfer the snapshot simultaneously while the
master VM is running. This behavior is called speculative fault
tolerance.

The simplest way to take snapshot is to copy the whole VM
states into local memory. However, since the master VM is
totally paused during the snapshot stage, the time length of

https://docs.google.com/forms/d/12JxxWDfvbo4shF6-AoWzpJ-abEX7XqK5lwDLq8jw3k4/viewform?pli=1&edit_requested=true

70 ICT Journal No.166

snapshot stage affects both output latency and throughput.
Besides, the time to take a snapshot is about fixed. So the
smaller the epoch sizes the lower throughput we will get. If
epoch size is 5ms and snapshot stage is 1ms, we will lose at
least 20% throughput from snapshot stage.

For transferring stage, our design is based on the assumption
that there is a dedicated 10G bandwidth between the two
physical machines where master and slave VMs are running,
considering the huge size of data to be transferred in short time.
It is not necessary to transfer whole snapshot to the slave VM,
because the slave VM has already held the snapshot of the
previous epoch. So during transferring stage, the fault tolerance
thread need only transfer all the dirtied parts to the slave VM.
When transferring finished, all the outputs in the output buffer
will be flushed to outside, such as end users and physical disks.
The last stage is output stage. As shown in Fig 3, the extra
latency penalty is composed of all four stages, in which running
stage and flushing stage are intrinsic to our design but snapshot
stage and transferring stage can be shortened by optimizations.

B. Unexpected long time of snapshot
When we evaluate the network speed of VM on fault

tolerance mode (FT mode), we use wget program to download
file from VM to client and from client to VM. The result is
shown on Table I.

TABLE I
THE RESULT OF VM NETWORK TRANSFER SPEED EXPERIMENT.

In Table I, we use two columns to show the result because
sometime the VM will stuck when downloading files and the
transfer speed will become very slow. We call this situation is
“blocked”. And we do the profiling of every stage to find which
blocked reason is. And we find the snapshot time is very huge.
The result is shown in Table II.

TABLE II.
THE RESULT OF SNAPSHOT TIME.

In TABLE II, we can see no matter it has workload or not,
the snapshot time always less than 1ms (millisecond). But when
the blocked happened, the snapshot time increase to 100ms to
600ms. That means some operations spend much time in
snapshot stage blocked. After we profiled snapshot stage, we
find out that the qemu_aio_wait function will use most of
snapshot time when the blocked situation happened. The
qemu_aio_wait function waits every aio (asynchronous
input/output) device finished its request and call the callback
function. If we do not wait for all aio requests, some aio
requests will not be finished before the end of epoch. That

means when doing failover, the unfinished aio requests will
disappear, because the unfinished status will not be saved in
any backup. Therefore, we need to find a backup mechanism to
hold this information. We talk about this solution on next
chapter.

C. TCP Performance issues due to holding output buffer
Because we flush all outputs until transfer stage is finished,

the TCP performance would be also affected. For example,
when the VM loads a web page, the overhead of response time
is very large, as TABLE III shows:

TABLE III
VM WEB PAGE LOADING TEST

According to Table III, we find that if the web page size is
larger, the response time is slower. Transferring big web pages
in FT mode is very slow. To find out the root cause, we do
another experiment to measure the output requests released on
every flush stage. The result is shown in Fig 4.

Fig. 4. The release output requests on every flush stage.

In Fig. 4, we can see it need to use 14 epochs for TCP to
reach the highest speed, and for the beginning 13 epoch, TCP
doesn't reach the full bandwidth the full bandwidth to transfer
data. That means if the first to 13th epoch is able to transfer data
with full speed, the transfer speed will be increased.

After reviewing the code, we find that the problem resides in
TCP congestion window (CWND). In general, the transmission
speed is limited by two factors: congestion window held by the
sender and receive window held by the receiver. The sender
maintains the value of congestion window. If the sender
receives an ACK, it updates the value of congestion window.
However, in FT mode, all output requests would be held until
the backup finished, so the TCP packets are not sent to the
receiver immediately, and the sender cannot receive ACKs
from the receiver not as soon as non-FT mode Therefore, the
congestion window would not increase quickly, so the TCP
performance is bad.

III. OPTIMIZATION

As mentioned in the previous chapters, the snapshot stage
and transferring stage can be shortened by adding some

71 第166期　電腦與通訊免費訂閱

optimizations. We propose some optimizations to reduce the
time of snapshot stage and transferring stage in this chapter:

A. Tracking of dirty virtual device states
The major components of one VM include CPU states,

memory states, virtual device states, external storage states as
well as external environment states. The first three classes of
states are self-explanatory. The external environment state is
the recognition of the VM to other users and systems. For
example, packets targeted to this recognized VM will be routed
and switched to this VM. If all the states are backed up on the
slave VM and the external environment states are set up
properly, the slave VM will seamlessly take over master VM's
role on the crash of master VM.

One essential step of taking snapshot for the master VM is to
transfer all states of virtual devices to the slave VM. And the
critical point is to take the snapshot for virtual devices in a very
short time considering the high frequency the master VM is
backed up to the slave VM (up to 200 times per second). In our
testing environment, a VM has around 30 virtual devices, and
the original migration codes take about 2ms to collect all the
virtual device states. This means the master VM will be paused
for 2ms for taking snapshots of virtual device states, which
results in an unacceptable performance overhead. Another
drawback is that the size of all the virtual device states is around
500Kbytes. For our chosen 5ms epoch time, it means that
taking snapshots for virtual device states needs a backup
bandwidth of about 100Mbytes/second.

A further observation is that most virtual device states keep
unchanged within an epoch. So if only the modified virtual
device states are transferred in each epoch, then the bandwidth
waste will be reduced. A simple method is to save every virtual
device state in a buffer and compare it with the state of this
epoch. If these two buffers have the same contents, then we will
not transfer it. If the contents are different, we can only transfer
the difference between them. However, this method requires
collecting all virtual device states in every snapshot stage,
which is inefficient.

Another observation is that most virtual device states reside
in userspace memory region of QEMU, as Fig. 5 shows. When
the guest OS executes an I/O instruction, there will be an
exception that causes a VMExit [11] [12]. The exception
handler inside KVM module will give the control to QEMU,
which will in turn deliver the control to virtual device codes.
Virtual devices will act according to their current device states.
This step varies for different virtual devices, and it requires a lot
of engineering effort to track the virtual device states change.
On the contrary, because virtual device codes accesses their
virtual device states by QEMU's MMU, there is a workaround
method to find out all the changed states. The x86 architecture
manual [11] [12] tells us that in paging mode whenever a page
is modified, the dirty bit in PTE (page table entry) will be set.
So in our case, the virtual device state for a virtual device will
be allocated exclusively in memory pages. At the end of each
epoch, the dirty bit of PTEs will be scanned. If one dirty bit is
set for PTEs of one corresponding virtual device states, then the

dirty bit is cleared and TLB will be flushed to invalidated old
PTE. The virtual states will be collected and sent to the slave
VM.

In this way, only a few (4~5 for every 5ms) virtual device
states are modified and backed up to slave VM. The time spent
to collect the virtual device states is neglected, and the resulting
size is reduced to around 30KB. The original migration codes,
which were designed merely for migration and not for frequent
backup, are still used to collect and load VM states, saving a lot
engineering efforts. With the help of underlining operating
system and the MMU hardware, the pause time of the master
VM is reduced and the bandwidth are saved for other
applications.

Fig. 5. The virtual device architecture in QEMU/KVM

B. Fine-grained dirty region tracking
In this section, we will first describe the characteristics of the

memory page dirtying of a virtual machine: high number in
short period and small partial modification within one page.
Then the reason is explained why common compression
methods cannot be applied here because of their lower
compressing rate and high CPU usage. Then, the scatter-gather
method used by our low latency virtualization-based fault
tolerance system is discussed in the term of CPU usage and
bandwidth saving. Also SSE instructions are used in the
scatter-gather step to improve the performance.

Memory state is the main part of a virtual machine, holds all
critical kernel data structures, user application data and other
essential information for the guest OS. As in live migration,
memory state handling takes the major part of time in fault
tolerance. While the master virtual machine is running, it will
process hardware inputs and produce outputs. In this process, a
bunch of memory pages will be modified. The baseline design
of our low latency virtualization-based fault tolerance system
defines that at the end of each epoch, slave virtual machine will
have the same memory states as the master virtual machine. As
a result, the memory states on slave virtual machine will be
synchronized with master virtual machine once per epoch.

The common way to synchronize memory pages from master
virtual machine to slave virtual machine is to write protect all
pages from guest OS and to track the Pages modified by guest
OS. If master virtual machine does not make enough pages

https://docs.google.com/forms/d/12JxxWDfvbo4shF6-AoWzpJ-abEX7XqK5lwDLq8jw3k4/viewform?pli=1&edit_requested=true

72 ICT Journal No.166

dirty intensively, a normal virtual machine only writes a small
portion of its memory pages in one epoch like 5ms. Fig. 6
shows the growing of the number of guest pages get dirtied as
the guest OS runs. Both kernel compilation and SpecWeb2005
produce hundreds of dirtied pages within a short time like 5ms.
To write protect pages for guest OS, hypervisor marks PTEs
read-only in shadow page table. When guest OS tries to write
the this page, page fault happens and hypervisor will mark this
page as dirtied, then hypervisor makes this page as writable in
shadow page table so that guest OS can write to this page. The
dirtied pages can also be collected by hardware support like
EPT Access/Dirty feature [11].

Fig. 6. The number of dirtied pages grows as VM is running.

The page dirtying behavior of virtual machine has two main
characteristics: high number and partial modification. Fig. 6
shows that for kernel compilation and SpecWeb2005, the
virtual machine writes to up to 800 pages within 5ms, or a rate
of about 600Mbytes/second. The baseline design is to support
fault tolerance for multiple virtual machines with a dedicated
10G NIC. But the dirty rate for one merely one VM lefts little
room for other virtual machines. If the master virtual machine is
not slowed down too much to sacrifice performance for
bandwidth saving, one dedicated 10G NIC can support two
master virtual machines. We know from experiments that
averagely only around 12% of one memory page is modified
within one 5ms epoch, as shown in Fig. 7. This finding means it
is unnecessary to transfer whole dirtied page to slave virtual
machine. If there exists a solution to transfer the only modified
bytes in one page, then bandwidth requirement of one virtual
machine can be reduced to as small as 75Mbytes/second, which
theoretically will enable up to 13 virtual machines be fault
tolerant with a dedicated 10G NIC.

Compression methods are used to reduce the transferred
memory size in many proposals. Fig. 7 shows that after a page
is exclusive-or with its original page, Zlib [13] can generate
compressed buffer size comparable to the modified bytes of one
page. However, commonly known compression algorithms like
Zlib, lz4 and lz0 have two drawbacks under such circumstance:
lower rate to process input and high CPU usage. According to
experiments, these algorithms can compress around 2000 pages
per second even configured with lowest compress level. In
addition, all of them use all of one CPU time during
compressing. Further experiments show that the compressing
rate is severely affected when a lot memory copy happens

during the process.

Fig. 7. Statistics of dirtied pages for average modified bytes, block size with
scatter-gather and compression results.

Below we will describe a scatter-gather method that utilizes
SSE related instructions to implement a fine-grained dirty
region tracking algorithm, designed with zero memory copy in
mind. Firstly we will introduce a data structure similar to radix
tree, as Fig. 8 shows. A page (4096 bytes) is divided into
continuous blocks, the size of which depends on how many bits
the SSE instructions can handle on the running processor.
Assume the block size is 512 bits or 64 bytes, and then a page
can be divided into 64 blocks. If one block keeps unmodified
during one epoch period, at the end of this epoch this block do
not be transferred to the slave VM. Only those modified blocks
will be transferred to the slave VM. The slave VM already
received the pages at the previous epoch, so by applying the
modified blocks to the reference page, the slave VM will get the
same content of this dirtied page as on master VM. Alongside
with the dirtied blocks, the master VM sends the radix tree data
structure to the slave VM as the positions of the dirtied blocks.
The radix tree is composed of two levels of dirty bit headers.
Each dirty bit header is one byte long. Level one dirty bit
header is one byte long, which means each bit represents data
length of 4096 bytes / 8 = 512 bytes. If the ith 512 bytes inside
the page are dirty, then the (i-1)th bit is set in the level one dirty
bit header. For each dirtied data blocks of 512 bytes, there is a
level two dirty bit header, each bit represents a data length of
512 bytes / 8 = 64 bytes. Similarly, if the ith block of size 64
bytes is dirtied within the 512 bytes, the (i-1)th bit is set in the
level two dirty bit header. So one bit in level 1 dirty bit header
corresponds to one level 2 dirty bit header. If one bit is not set in
level one dirty bit header, there doesn't exist a corresponding
level two dirty bit header for this bit, and there are no data
blocks.

Fig. 8. The radix-tree like structure for gathering fine-grained dirtied block

73 第166期　電腦與通訊免費訂閱

The bit header is not necessarily a radix-tree like structure. It
can be single bitmap. For a block size of 64 bytes, the length of
the single bit header is 4096/64/8 = 8 bytes. The header size is
small even if all 8 bytes are sent. The radix-tree is used for
smaller block sizes. If the block size is 8 bytes, then the length
of the single bit header is 64 bytes. An extra 64 bytes for each
dirtied page will waste bandwidth.

To generate the radix tree and find out the dirtied blocks
within one page, an efficient method is required to decide if one
particular block is modified. For any guest physical page, a
backup is copied before it is really modified by guest VM.
Experiments show that all methods that require scanning the
page content cannot reach satisfying processing rate. Our best
highly optimized algorithm to compare blocks can only process
22,000 pages per second, while SpecWeb2005 can produce
100,000 dirtied pages per second. Not mention the comparison
based on processor consumes 100% CPU usage. Further
optimization depends on the SSE related instructions, which
will process 16 bytes, 32 bytes or 64 bytes data each time.
Firstly one block in the backup page is loaded into SSE register,
then the corresponding block in the page being used by master
VM is loaded into another SSE register. After these two
loadings, these two registers are exclusive or and whether this
block was modified or not based on the XOR result. The
comparison based on SSE instructions can handle up to 90,000
pages per second, that is, 450 pages per 5ms. What is more, it
consumes 40% CPU usage for one VM.

C. Aio request pending list to solve unexpected long time
snapshot

As mentioned in previous chapters, if we disable
qemu_aio_wait function, some aio requests will be lost because
this unfinished status is not be saved on any backup. So we
need a method to back up the unfinished aio request.
Specifically, we need to record all aio requests until it finished.
And we call this record list as pending list. First, we need to
find out how many types of aio request we should record. And
we find only disk write will produce a long flush time. So we
only need to record the disk write events.

The steps of recording write request are shown below: first,
we need to hold on every write request until flush stage because
the output buffer need to be held until flush stage as described
in chapter 2, and save these requests to a temporary list. Then,
during flush stage, we issue all requests from temporary list and
save all issued requests to pending list. Third, the temporary list
and the pending list would be backed up to slave VM. Fourth, if
there are new requests issued from temporary list, the request
will append to the pending list. Finally, if the request finished,
we will remove it from the pending list.

We can let the disk write aio requests be asynchronous, which
means taking snapshot can be done without waiting for the disk
write requests produced by previous epoch finished. Therefore,
the qemu_aio_wait function can be disabled.

D. TCP performance optimization
To increase TCP transmission speed, we need to increase the

congestion window in the guest OS. In order to increase

window size of guest OS, senders in guest VM should receive
ACKs without too long latency.

In order to increase the congestion window, we can send fake
ACKs to deceive Guest OS, so the congestion window grows
and the transmission speed increases. However, in this scenario,
if any packet is lost, we have to deal with it by ourselves;
otherwise, Receiver will never receive the lost packets.
Therefore, we need to back up all packets and have a TCP stack
in QEMU to handle all congestion events, such as packet lost.
We implemented the prototype, and the result is shown in
chapter IV.

IV. EXPERIMENTAL RESULTS

We evaluate our results to see the difference between FT
without optimizations and with optimizations. The first
experiment is to test the response time and the system
performance overhead. The experiment environment is shown
in Fig. 9.

Fig. 9. The experiment environment

About the experiment environment, we use two physical
machines, where one is the primary host, which is responsible
for running the master VM and another is the backup host,
which is for receiving backup status for slave VM. And we use
a client machine to ping the master VM for measuring the
response time. On the other hand, we run the kernel compiling
process and measure its execution time on the master VM,
because we need to evaluate the overhead of our low latency
virtualization-based fault tolerance system. The result is shown
in TABLE IV.

https://docs.google.com/forms/d/12JxxWDfvbo4shF6-AoWzpJ-abEX7XqK5lwDLq8jw3k4/viewform?pli=1&edit_requested=true

74 ICT Journal No.166

TABLE IV
THE EXPERIMENT RESULT

In TABLE IV, we can see the response time is about 400
times slow compare with fault tolerance disabled without any
optimization. And the compile time is about 40 times slow
compared with fault tolerance disabled. But if we use the SSE
optimization (Fine-grained dirty region tracking), we can
reduce the response time to 64.2ms, and compile time is only
02’36”. By using the version with the tracking of dirty virtual
device states optimization, the response time is only 9.8ms, but
the compile time will increase to 11’39”. The reason is that our
response time is reduced and the backup frequency is increased,
so the overhead will also increase. Finally, we run the
experiment by using the version with the pending list
optimization. The response time is increase to 12.3ms, but we
can get the compile kernel time only 07’19”. Although the
performance on VM is not good, the response time is still short.

We also test the TCP performance with our fake ACK
optimization, and the result is shown in Fig. 10.

Fig. 10. The TCP performance with fake ACK optimization

In this experiment, we send 100Mbytes data from VM with
fault tolerance to a client. With fake ACK optimization, we
only need about 11 epochs to transmit all 100Mbytes. Without
fake ACK optimization, it needs about 38 epochs. And the
average number of packets transmitted in an epoch with and
without optimization is 342.667 and 38.125, respectively. The
TCP performance is largely increased with our fake ACK
optimization.

V. CONCLUSION

To optimize the virtualization-based fault tolerance system,
we need to consider reducing the snapshot time and transferring

time. Reducing the snapshot time can let VM has more running
time within an epoch, so it can increase the VM executing
performance. Reducing the transferring time can reduce the
response time of VM because the output will be buffered until
the flush stage which means the backup finished. As mentioned
in the previous chapters, the fault tolerance system latency is
430.6ms without any optimization. But with the SSE
optimization, the latency is decreased by 85%. Furthermore, we
add the tracking of dirty virtual device states optimization to
our fault tolerance system, the latency is also decreased by 85%
compared with the SSE optimization version. Although the
latency is increased by 26% with pending list optimization,
compared with the tracking of dirty virtual device states
optimization version, the compiling time is still decreased by
37%. In conclusion, for the latest version of the fault tolerance
system, the latency and the compiling time are decreased by
97% and 82%, respectively, compared with the version without
any optimization. With several optimizations, the performance
of our fault tolerance system is greatly improved. In addition,
the VM would run any kind of workload such as CPU-bound or
IO-bound. We need to let these workload not affect our fault
tolerance backup job and our fault tolerance backup also not
affect it, too. In this way, we can get a low overhead and a short
response time on our virtualization-based fault tolerance
system.

REFERENCES

[1] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric
Jul, Christian Limpach, Ian Pratt, and Andrew War eld. Live migration of
virtual machines. In Proceedings of the 2nd conference on Symposium on
Networked Systems Design & Implementation-Volume 2, pages 273-286.
USENIX Association, 2005

[2] Daniel J Scales, Mike Nelson, and Ganesh Venkitachalam. The design
and evaluation of a practical system for fault-tolerant virtual machines.
Technical report, Technical Report VMWare-RT-2010-001, VMWare,
2010.

[3] Brendan Cully, Geo rey Lefebvre, Dutch Meyer, Mike Feeley, Norm
Hutchinson, and Andrew War eld. Remus: High availability via
asynchronous virtual machine replication. In Proceedings of the 5th
USENIX Symposium on Networked Systems Design and Implementation,
pages 161-174. San Francisco, 2008.

[4] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew War eld. Xen and the
art of virtualization. ACM SIGOPS Operating Systems Review, 37
(5):164-177, 2003.

[5] Michael Nelson, Beng-Hong Lim, Greg Hutchins, et al. Fast transparent
migration for virtual machines. In USENIX Annual Technical
Conference, General Track, pages 391-394, 2005.

[6] Xiang Zhang, Zhigang Huo, Jie Ma, and Dan Meng. Exploiting data
deduplication to accelerate live virtual machine migration. In Cluster
Computing (CLUSTER), 2010 IEEE International Conference on, pages
88-96. IEEE, 2010.

[7] Maohua Lu and Tzi-cker Chiueh. Fast memory state synchronization for
virtualization-based fault tolerance. In Dependable Systems & Networks,
2009. DSN'09. IEEE/IFIP International Conference on, pages 534-543.
IEEE, 2009.

[8] Petter Svard, Johan Tordsson, Benoit Hudzia, and Erik Elmroth. High
performance live migration through dynamic page transfer reordering and
compression. In Cloud Computing Technology and Science (CloudCom),
2011 IEEE Third International Conference on, pages 542-548. IEEE,
2011.

[9] Yuyang Du, Hongliang Yu, Guangyu Shi, Jian Chen, and Weimin Zheng.
Microwiper: E_cient memory propagation in live migration of virtual
machines. In Parallel Processing (ICPP), 2010 39th International
Conference on, pages 141-149. IEEE, 2010.

75 第166期　電腦與通訊免費訂閱

[10] Yoshi Tamura. Kemari: Virtual machine synchronization for fault
tolerance using domt. Xen Summit, 2008, 2008.

[11] Intel 64 and IA-32 Architectures Developer's Manual.
http://www.intel.com/content/www/us/en/architecture-and-technology/6
4-ia-32-architectures-software-developer-manual-325462.html.

[12] AMD64 Architecture Programmers Manual.
http://developer.amd.com/resources/documentation-articles/developer-g
uides-manuals

[13] Zlib http://www.zlib.net/

曹伯瑞 (Po-Jui Tsao) received his Master degree in
Computer Science from National Cheng Kung
University, Tainan, Taiwan, in 2010. He is now an
associate software engineer of Datacenter System
Software (Div-F) division hypervisor team,
Information Comm. Research Lab at ITRI. His
research interests include cloud computing,
virtualization technology.

孫逸峰 (Yi-feng Sun) is a PhD candidate in Stony
Brook University, with a focus on research that
improves reliability of Virtual Machines in Cloud
Computing.

陳立函 (Li-Han Chen) received his Ph.D. degree in
Computer Science and Information Engineering
from National Central University, Taiwan in 2015.
Currently, he is a software engineer of hypervisor
team in Datacenter System Software (Div-F)
division, Information Comm. Research Lab at ITRI.
He is interested in system security, mobile security,
cloud computing, and virtualization.

卓傳育 (Chuan-Yu Cho) received his Ph.D. degree
in Computer Science from National Tsing Hua
University, HsinChu, Taiwan, in 2006. He is now a
senior software engineer and manager of Datacenter
System Software (Div-F) division hypervisor team,
Information Comm. Research Lab at ITRI. His
research interests include cloud computing,
virtualization technology, cyber security, image
processing, video coding and streaming.

https://docs.google.com/forms/d/12JxxWDfvbo4shF6-AoWzpJ-abEX7XqK5lwDLq8jw3k4/viewform?pli=1&edit_requested=true
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-manual-325462.html
http://www.zlib.net/
http://developer.amd.com/resources/documentation-articles/developer-guides-manuals

